Cómo ampliar la memoria del PC

En muchos casos los ordenadores presentan ciertas limitaciones al ejecutar programas y procesar datos: los procesadores trabajan a frecuencias de reloj muy elevadas y procesan instrucciones y datos a velocidades del orden de los GHz. Pero esos datos y programas no están lo que se dice «cerca» de la lógica integrada en los núcleos que conforman una CPU moderna.

Cuando un ordenador se enciende, la CPU comienza a procesar las instrucciones almacenadas en el disco duro dentro del gestor de arranque, que, a su vez, pasa el control al sistema operativo instalado físicamente en una carpeta del disco duro. Pero esas instrucciones no se pueden procesar directamente por la CPU, sino que necesitan estar almacenadas en memoria. Así hay que llevarlas antes de nada al subsistema de memoria RAM, que a su vez lleva los datos que se van a ejecutar de manera inmediata a la memoria caché dentro de la CPU (nivel L3) y dentro de los propios núcleos (L1 y L2).

Por tanto, cuando el procesador busca una instrucción y/o un dato, los busca en la memoria que tiene más cerca, la caché. Si no está en la L1 o la L2, se dirige a la L3; y si no está en la L3, busca en memoria. Si no está en la RAM, hay que acudir al disco duro donde esté el código o el dato requerido; y, en su defecto, en cualquiera que sea el soporte donde esté el programa o los datos.

Cuando no encuentra lo que necesita aquí, el subsistema de memoria acude a la RAM para buscar el dato o el código que precisa para seguir realizando cálculos al mayor ritmo posible. Con respecto al impacto de la velocidad, se carga la caché antes de que se necesite con suficiente antelación como para no tener que esperar por ello. Y con los datos sucede algo parecido. Así pues, en la mayor parte de los casos, la CPU no tiene que esperar por el código o los datos; o lo hace de un modo estadísticamente independiente de la rapidez de la memoria o incluso de la latencia.

ampliar RAM 3Según las pruebas de rendimiento de 3Dmark Vantage para distintos valores de la velocidad de la memoria, se rebela una diferencia de rendimiento es marginal, sobre cuando superan los 667 MHz de frecuencia.

La práctica del overclocking es un tanto peculiar, pues no solo se trata de obtener un beneficio directo en los resultados a partir de una mayor velocidad de memorian (que lo es, aunque sea marginal), sino también de disponer de un hardware con margen suficiente para poder aumentar las temporizaciones de los buses del sistema sin temor a que un componente deje de funcionar por este motivo. Fabricantes como Intel o AMD consienten que se configuren frecuencias de reloj por encima de las nominales, y tecnologías como XMP (eXtreme Memory Profiles) permiten que la frecuencia de los módulos compatibles con estos perfiles extremos se configure de un modo «seguro» con temporizaciones de hasta 2.000 MHz (el caso de XMP2000) y valores máximos de hasta 2.133 MHz.

ampliar ram 2Por otro lado, con respecto al impacto en la cantidad cuanto mayor mayor juego a los usuarios.  Hay dos formas de solventar este problema: instalar un disco más rápido y/o aumentar la cantidad de memoria. El disco duro rápido es una buena propuesta siempre y cuando se trate de una unidad SSD, pero el precio es elevado y el rendimiento sigue siendo inferior al de la RAM. Por su parte, si se aumenta la cantidad de memoria lo suficiente, el resultado puede ser óptimo sin que la inversión sea exagerada. En primer lugar, se puede prescindir del archivo de paginación en disco siempre y cuando la cantidad de RAM sea de 4 Gbytes o más. Con esa cantidad, el sistema operativo es capaz de ir ocupando y liberando memoria según se carguen y descarguen aplicaciones.

Conclusiones

Salvo que seas un fanático del overclocking, nuestra recomendación a la hora de ampliar memoria es que te decantes por la solución que te permita instalar más cantidad de RAM por el precio más económico. Un módulo de baja latencia y alta frecuencia de 2 Gbytes puede costar tanto como dos módulos de memoria de series económicas como la Value RAM de Kingston con menor frecuencia y latencia.

Los módulos de 4 Gbytes siguen siendo caros, aunque en la gama de módulos de G-SKill hay propuestas por menos de 200 € para cada módulo con velocidad de 1.333 MHz. Configuraciones de 6 Gbytes DDR3 ya se encuentran por menos de 160€ incluso. Y ya hay disponibilidad teórica de kits de 16 Gbytes por menos de 750 € dentro de las propuestas de G-Skill. Son cifras elevadas, desde luego, pero administrando adecuadamente esta capacidad se pueden obtener mejoras de rendimiento notables no solo para el sistema en general, sino para aplicaciones concretas en particular.

You may also like...